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ABSTRACT 
 

Predicting where terrorists are most likely to strike concerns planners, law enforcement 
and government agencies at various levels, and engineers who must design facilities of all 
kinds. The present work is an effort to use agent-based modeling to examine the 
interaction of civilians, terrorists, and security to determine the types of facilities in a 
town or city that are most susceptible to attack. Agent modeling of civil violence has 
been performed in the past. The ultimate goal of our research is to be able to estimate the 
probability of attack for various types of facilities in a population center so that resources 
can be allocated for hardening or otherwise protecting those facilities. Because of the 
nature of resource-based agent modeling, the agents must be allowed to evolve in the 
town or city environment before the day-to-day behavior of the community is simulated. 
We have approached that problem by breaking the total simulation into two parts: (1) the 
incubation of the community, where the agent population evolves to live in the 
environment, and (2) the simulation of the behavior of the evolved agents in the 
community environment. Results from this work indicate that incubation can be ended at 
any desired time and still allow modified time-step simulation. This result allows 
modified time-step simulation of a population in any stage of its evolution. When 
transitioning from incubation to simulation, the behavior of the population must be 
allowed to stabilize in the early stages of the shortened time-step simulation. 
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INTRODUCTION 
 

Predicting where terrorists are most likely to strike concerns planners, law enforcement 
and government agencies at various levels, and engineers who must design facilities of all kinds. 
The present work is an effort to use agent-based modeling to examine the interaction of civilians, 
terrorists, and security to determine the types of facilities that are most susceptible to attack. 
Agent modeling of civil violence has been performed in the past (Epstein 2002). The ultimate 
goal of our research is to be able to estimate the probability of attack for various types of 
facilities in a population center so that resources can be allocated for hardening or otherwise 
protecting those facilities. 
 

Agent models comprise a range of types, of which this one is an extension of the type 
used by Epstein and Axtell (1996) in which society evolves by using the basic concepts of 
resources in the environment, agent metabolism for those resources, and agent vision (knowledge 
of the environment). This model represents a community in which civilians evolve to become 
radicals (inactive terrorists) who may become active terrorists committing attacks on the 
community. The environment in which this community evolves consists of a rectangular grid on 
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which a number of resources lie. Civilian agents evolve in this environment on the basis of their 
vision and metabolism for the various resources. The terrorist agents evolve from the civilian 
agents by using a tag-mediated procedure derived from that used by Axelrod (1997). After the 
agent becomes a terrorist, it remains an inactive terrorist until its age and wealth each reach a 
specific value that allows it to become active. An active terrorist agent stops looking for 
resources and begins to examine the agent wealth within its vision. When it finds a location of 
high local wealth, it moves to that location and becomes a suicide bomber that explodes, 
destroying the agents and the wealth on the surrounding grid points. The number and location of 
security agents are determined on the basis of the wealth, fear, and innate nervousness of the 
agents in the civilian population. The number of security agents in the community evolves as 
attacks occur. Security agents search for and arrest terrorists in regions of locally high 
populations. 
 

Results from this basic model (Bulleit and Drewek 2005) show that the location of 
attacks is affected by the choice of the base level of security. Higher base levels of security shift 
many of the attacks away from the areas of high resources. In this work, a base level of security 
does not exist; security levels are endogenous. Thus, it appears that endogenous agent modeling 
of communities will require the use of an incubation period during which the community can 
evolve to allow the agents to acclimate to the environment and develop a set of initial conditions 
that are themselves endogenous. A limited use of incubation has been used by Cederman (2003). 
In that case, he merely allowed the simulation to run for a set number of time-steps before 
beginning data collection. We propose a more distinct incubation period. In the proposed 
incubation period, the time-step will be longer than what will later be used for the community 
simulation from which results will be gleaned. For instance, during the incubation period, the 
time-step might be representative of a year. The community will be allowed to evolve during the 
incubation to a user-chosen time. At that point, the time-step will be shortened (e.g., to a day), 
and the simulation will continue with the conditions at the end of incubation becoming the initial 
conditions for the short time-step simulation. 
 

The objective of this paper is to describe the use of a simulation process that has an 
incubator in which the community evolves to a certain point and a simulator in which the day-to-
day community simulation is performed. 
 
 

MODEL DESCRIPTION 
 
 
Community Environment 
 

The environment in which this community evolves consists of a 50 × 50 rectangular grid 
on which lie a number of piles of resources. Each civilian agent requires a set amount of each 
different resource. The resource piles can be isolated in the sense that there may not be a 
resource gradient between the piles. This lack of gradient is important to the design of the 
civilian agents. For this study, the environment consists of four resource piles, each representing 
a different resource. All agents require each resource to live. A second aspect of the environment 
relates to the effects of a terrorist attack on the environment. A terrorist attack, modeled as a 
suicide bomber, results in the destruction of all resources on the grid point where the terrorist 
was at the time of the attack plus all agents, all their wealth, and all resources on the Moore 
neighborhood of that grid point. The resources at these nodes remain zero for 2 years before they 
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begin to regenerate. The attack also makes agents fear the grid points where the attack occurred. 
The level of fear that agents feel for the attacked nodes dissipates with time and spreads to 
surrounding nodes. Figure 1 shows von Neumann and Moore neighborhoods.  
 

For the environment that we discuss in this paper, the range of resource values for each 
resource is a maximum of 54.0 units and a minimum of 1.0 unit. The grow-back rates in the 
incubator are one-fourth of the maximum value allowed at each node. Hence, the maximum 
grow back rate is 13.5 units/year, and the minimum is 0.25 unit/year. Figure 2 shows the 
environment. The maximum resources are on the peaks, and the minimums are on the plains.  
 
 
Civilian Agents 
 

Civilian agents evolve in the environment. Each agent is assigned an initial metabolism 
for each different resource in the environment from a uniform distribution with a range of 1.5 to 
3.0 or U(1.5, 3.0) for resources 1 and 3 and U(1.25, 2.50) for resources 2 and 4. The initial agent 
vision is an integer selected from U(3, 7). Vision is the number of grid points that an agent can 
see in the four cardinal directions from its current location. The agents are also randomly 
assigned an amount of each of the different resources in the environment from U(45, 90), their 
wealth. Thus, an agent’s wealth is an agent’s store of each of the various resources in resource 
units. Each agent’s initial endowment is randomly selected from U(12, 24), in units of 
generalized resources. A generalized resource for an agent is one of its resources divided by the 
metabolism for that resource, thereby converting resource units into a time or, in other words, the 
amount of time an agent can live, assuming that it collects no more of the given resource. Initial 
endowment is discussed subsequently. The agents’ death age is an integer selected randomly 
from U(40, 80), and the agent’s nervousness factor is randomly selected from U(0, 1). 
Nervousness is a measure of how nervous an agent is in the presence of fear. Last, each agent in  
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FIGURE 2  Community environment 
 
 
the initial population is given a cultural tag in which each of the five tag integers is randomly 
selected from U(0, 9). 
 

The initial population is made up of agents of an age between 10 and 50. Since there is 
some overlap in the initial age range and death age range, if the death age selected is less than the 
initial age, another death age is selected until the death age is greater than or equal to the initial 
age. Once the agents’ initial wealth has been determined, the agents’ initial generalized wealth is 
calculated. Generalized wealth is the length of time an agent can live assuming it collects no 
additional resources of any kind; i.e., the minimum of the generalized resources. 
 

The agents move around the environment in search of resources that they need to live. 
The agents search for their critical resource. The critical resource is the resource currently 
limiting the agent’s life span, assuming no additional resources are collected. The critical 
resource is the resource yielding the minimum generalized resource and is the resource used in 
determining an agent’s generalized wealth. Because the environment does not have a resource 
gradient at all locations, the agents were given memory. Without this memory, it is difficult to 
evolve a stable population. The resource memory is simple: the agent remembers the grid point 
where the maximum of each of the different resources that it has encountered in its travels 
around the environment is located. Thus, in this case, since there are four different resources in 
the environment, the agent stores the location and amount of the maximum value of each of the 
four resources it has encountered. It updates these values as it finds a better source (larger value) 
of a specific resource. As well as allowing a stable population to evolve, this simple memory 
allows agents to evolve patterns of travel between resource locations; for instance, the path 
between two resources could represent travel between home and work in a real community. 
 

Agents also have a memory of the maximum and minimum fear they have seen as they 
traveled around the environment. For the baseline case, discussed subsequently, fear memory 
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includes the past 5 years. As an agent searches its local environment for resources, it considers 
the fear associated with the nodes it is examining. The maximum and minimum fears seen during 
a given time-step are recorded and will be remembered for the next 5 years. After 5 years have 
passed, maximum and minimum fears for the sixth year are forgotten. Fear and its use are 
described in detail below. 
 

Agents have a gender, and when male and female agents meet they procreate if each of 
them has reached a fertile age and is wealthy. Procreation allows the agents’ vision, metabolism, 
and nervousness to evolve. A potential parent is an agent that is fertile (i.e., has an age within the 
fertility age range) and possesses a generalized wealth equal to or greater than its own initial 
endowment. The minimum fertility age for males is an integer selected randomly from U(12, 15) 
with the maximum from U(50, 60). For females, the selection is made from U(12, 15) and 
U(40, 50), respectively. When an agent moves to a node, if that agent is a potential parent and 
one of its von Neumann neighbors is also a potential parent, and assuming that in one of their 
von Neumann neighborhoods there is an unoccupied node, then an child is born. If more than 
one potential parent of opposite gender is located in the agent’s von Neumann neighborhood and 
an unoccupied node is still available, then the mate is selected at random. Potential parent agents 
who have a parent/child relationship or share a common parent are not allowed to procreate. 
 

When a newborn agent is added to the population, its placement in the environment is 
selected randomly from all the unoccupied nodes in the parents’ von Neumann neighborhoods. 
The newborn’s vision is determined by taking the average of the vision of the parents (rounded 
to the nearest integer) with a mutation probability, Pmv, of 0.0025 that this value will be 
increased by 1.0 or decreased by 1.0. (Vision is limited to a minimum of zero and has no set 
maximum.) Infant agent metabolisms are determined in the same way, with mutation probability 
Pmm = 0.0025, except that the minimum metabolism cannot drop below the minimum of the 
range of the uniform distribution used in the selection of metabolisms for the initial agents 
(i.e., 1.25 or 1.5). Infant agent nervousness is determined the same way, with mutation 
probability Pmn = 0.0025, but the change is either +0.1 or –0.1. Nervousness is kept within the 
range of 0 to 1. The newborn’s initial wealth is calculated by multiplying one-half of the father’s 
initial endowment by his metabolism for each resource and adding to that the corresponding 
results of a similar calculation for the mother. The mother and father each donate the resources to 
their newborn; the resources donated are forfeited from the parents. This store of individual 
resources is used to determine the newborn agent’s initial generalized wealth by dividing each 
resource level by the newborn’s metabolism for each respective resource. The newborn agent’s 
initial generalized wealth serves as its initial endowment. The newborn’s gender is selected at 
random, with an equal chance of each. The newborn’s fertility age range is selected from the 
ranges used by the initial population, as is the newborn’s death age. The newborn’s initial 
knowledge of where resources lie in the environment is taken from each parent’s memory: The 
parents give the newborn the “best” locations of each resource in either of their memories. Note 
that the parents also exchange the best resource locations in their respective memories. The 
newborn’s cultural tag is determined from its parents’ tags; for each tag integer, there is an equal 
probability that the value will be taken from the mother or the father. 
 
 
Terrorist Agents and Terrorist Attacks 
 

Terrorist agents evolve from the civilian agent population. The evolution of a civilian 
agent to a terrorist is performed by using a tag-mediated process that is based on the approach 
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used by Axelrod (1997). As described above, each agent is assigned a tag at the beginning of the 
simulation or at birth. The tag consists of a string of five integers in which each integer ranges 
from 0 to 9. As the agents move around, they interact with other agents. The interaction is 
controlled by the tags, and the evolution of a civilian to a terrorist is based on the tag values. 
First, consider interaction. When an agent moves to a grid point, it examines, at random, one of 
the grid points in its von Neumann neighborhood. If an agent is in that location, the agents 
compare the sum of the absolute value of the difference between each of the five integers in their 
tag: 
 

 
5

ij ik
1

S = I  - I
i=
∑  , (1) 

 
where I is the value of the tag integer, i is the location of the tag integer, and j and k are the 
indexes of the interacting agents. The larger this sum is, the smaller the probability that the 
agents interact. If the sum is 45, then the probability is 0.0 that they interact. If the sum is 0, then 
the probability of interaction is 1.0. The probability of interaction is linear between these two end 
points. If the agents interact, then one of the integer locations on the tag is chosen at random ⎯ a 
0.20 probability that any one of the five is chosen. Once one of the integer locations is chosen, 
the agents compare the integer they have at that location. If the integers are the same, nothing 
happens. If the integers are different, then one of two things occurs: (1) the agent that moved 
changes its integer to match the agent that it interacted with, or (2) the agent that moved has a 
radical change. The probability of a radical change is determined from using: 
 

 ij ik
rc b

I  - I
P  = P

9
 , (2) 

 
where Prc is the probability of radical change, Pb is the base probability (a Pb of 0.02 is used in 
all example simulations), and Iij and Iik have been defined previously. The direction of the 
radical change is determined by using the changing agent’s current integer value. For example, if 
the current integer is 2, then there is a 2/9 probability that the agent will change to a 9, and a 7/9 
probability that the value will change to 0. The agent that moved will be the changing agent. 
After the agents have interacted, whether or not an integer change has occurred in either of the 
above two ways, there is still a small, isolated change probability, Pic, of 0.02 that one of the 
integers on its tag will change by –1 or +1. This ends the interaction. The agent that moves has 
the changes occur to it so that there is no possibility that an agent will be changed more than 
once during any time-step (Axelrod 1997). 
 

An agent becomes a terrorist on the basis of the sum of the five integers in its tag 
(referred to as cultural identity). The probability that the agent becomes a terrorist is determined 
by using a U-shaped symmetrical polynomial function that passes through 1.0 at a sum of 0, 
passes through 0.0 at a sum of 22.5, and passes through 1.0 again at a sum of 45. Figure 3 shows 
the U-shaped curve. Thus, there is some probability that any agent can become a terrorist, but the 
probability is greatest near the end points of the sum of the tag integers. After the agent becomes 
a terrorist, it remains an inactive terrorist until its age and wealth each reach a specific value that 
allows it to become active. An inactive terrorist agent becomes active if it is 18 years old or older 
and its generalized wealth is equal to 5.0 or greater. Once active, the terrorist agent will remain 
active as long as its generalized wealth remains greater than 3.0. After every change to the tag,  
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FIGURE 3  Probability of becoming a terrorist 
 
 
the agent’s new sum is used to determine the probability of becoming a terrorist (if the agent is 
already a terrorist, the probability is that of remaining a terrorist). 
 

An active terrorist agent stops looking for resources and begins to examine the wealth on 
the von Neumann neighborhood of grid points within its vision and moves to the node with the 
largest surrounding wealth. (Note that even though the terrorist stops looking for resources, it 
continues to collect resources at the nodes it is visiting) This wealth information, referred to as 
surveillance data, consists of the present agent generalized wealth and the moving average of the 
agent generalized wealth on each grid point in the von Neumann neighborhood over the past 
10 time-steps (referred to as historical nodal wealth). 
 

This approach is used because terrorists do not strike just very wealthy locations but also 
locations where wealth passes through (e.g., airports). The active terrorist agent then keeps track 
of the mean and standard deviation of the largest five surveillance data values that it has seen in 
its travels. When it finds a grid point that has a surveillance data value that is greater than the 
mean plus some number of standard deviations (typically 1.0) and the coefficient of variation of 
its surveillance data is less than 0.25, it becomes a suicide bomber and explodes, destroying 
wealth on the Moore neighborhood as discussed above. These two criteria for detonating allow 
an active terrorist agent to attack when it finds a local region with a relatively consistent high 
level of wealth. 
 

When a terrorist agent conducts an attack, all of the agents with their wealth and the 
nodal resources are destroyed in the terrorist agent’s Moore neighborhood. Agents will fear the 
nodes in the destroyed area and, over time, in areas surrounding the destroyed area. The sum of 
all the agent generalized wealth destroyed becomes the fear at each of the nodes in that Moore 
neighborhood. If the level of fear is greater than the level that existed before the attack, then the 
portion of the fear that is greater than the existing fear level will diffuse outward over time, 
reducing the nodal intensity of the fear. Eventually, if enough time elapses without another 
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terrorist attack, the fear level from the attack becomes uniform across the environment, thereby 
affecting every agent equally and thus having no effect on any agent’s decision process. The 
spreading of fear has been modeled in the same way that Epstein and Axtell (1996) modeled the 
diffusion of pollution> Details on the diffusion of fear can be found in that reference. If the level 
of fear is less than the level that existed before the attack, then the fear level remains the same as 
it was before the attack for those nodes, that is, new fear is not summed on top of existing fear. 
 

Agents evaluate the critical resource that they see by using the adjusted critical resource. 
The adjusted critical resource is used to evaluate the resources on a given node. The adjusted 
critical resource is the amount of the critical resource at a node adjusted to take into account the 
fear level at that node, the fear memory of the agent, the generalized wealth of the agent, and the 
innate nervousness of the agent. The resource values (for the critical resource) at each node are 
adjusted according to the following equation: 
 
 iii ΔRRAR −=  , (3) 
 
where 
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where ARi is the adjusted critical resources located at node i, Ri is the amount of the critical 
resource located at node i, ΔRi is the amount of resource located at node i that an agent is willing 
to sacrifice for less fear, n is the agent’s innate nervousness factor, fi is the fear at node i, fmax is 
the largest fear seen in the last 5 years, fmin is the smallest fear seen in the last 5 years, and GW 
is the agent’s generalized wealth. The two terms making up the exponent serve two purposes: the 
first term normalizes the fear level at node i to the range of fear seen in the recent past, and the 
second term normalizes the relative fear, fi − fmin, to the agent’s generalized wealth. The “9” 
appears in the second term because there are nine nodes in a Moore neighborhood. Once each 
node has been considered, the agent moves to the node with the largest adjusted critical resource. 
 
 
Security Agents 
 

The number of security agents in the community evolves as attacks occur. The number of 
security agents is based on characteristics of each agent in the population. These characteristics 
include the wealth of the agent, the resources that the agent collects at each time-step, the level 
of fear that the agent feels at that time-step, the maximum and minimum amount of fear that the 
agent has felt in the past, and the inherent nervousness of the agent. These characteristics are 
used to determine the amount of resources that the agent is willing to contribute to buying 
security. Note that the agents do not actually give up any resources. One method of putting a 
dollar value on a nonmarket good is to conduct a survey, essentially asking people how much 
they would be willing to pay for something to happen (Dorfman and Dorfman 1993). The 
responses are summed for the population affected, and this becomes an estimate for the value of 
that nonmarket good. This is called contingent evaluation and corresponds to the approach we 
are using to assign security to the environment.  
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 At each time-step, adult civilian agents (agents that have reached their minimum fertility 
age) consider what portion of the resources being collected at that time-step they would be 
willing to contribute to purchase security. This willingness to contribute resources, without 
actually giving them up, is the agent’s demand for security. Equation 5 is used to calculate the 
amount of each resource that each agent is willing to contribute: 
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where Cj is the contribution of resource j, Rij is the amount of resource j at node i, f0 is the 
maximum fear that the agent has seen during that time-step, and the other variables are the same 
as in Equation 4. The first term making up the exponent in Equation 5 normalizes f0 to the range 
of fear seen by the agent in the recent past, and the second term normalizes f0 – fmin to the 
agent’s generalized wealth. During the time-step, the agent contributions are summed, and at the 
end of the time-step, there is a pool of each resource. The average metabolism for all nonsecurity 
agents for each of these resources is determined. Each resource pool is divided by the average 
metabolism for that resource. The minimum of these values becomes the number of security 
agents required at the end of the time-step (i.e., the number of security agents is the average 
number that can be supported by the contributed resources).  
 
 If the existing number of security agents needs to be increased to meet the calculated 
requirement, new security agents are introduced in the environment. The new security agents are 
given vision randomly selected from the range given by the absolute minimum and absolute 
maximum vision in the agent population. Nodes with higher historical nodal wealth have a 
higher probability of receiving these new security agents. Specifically, each unoccupied node is 
assigned a random number from U(0,1). Each of these random numbers is multiplied by the 
historical nodal wealth at the node divided by the maximum historical nodal wealth found in the 
environment. After all of the unoccupied nodes have been considered, the new agents are located 
on the nodes with the largest adjusted random number. 
 
 If the existing number of security agents needs to be decreased to meet the requirement, 
some existing security agents are removed from the environment. The security agents located on 
nodes with lower historical nodal wealth have a higher probability of being removed. The 
process for removing security agents is the same as for adding them, except that the security 
agents located on the nodes with the smallest adjusted random number are removed from the 
environment. 
 

Security agents search for terrorists in regions of high population. Each security agent 
moves to the open grid point within its vision that has the most agents on its von Neumann 
neighborhood. Once on that grid point, the security agent examines its von Neumann 
neighborhood. It interacts with (investigates) each agent on the von Neumann neighborhood with 
a probability related to the number of agents in the neighborhood; for example, if there are three 
agents in the von Neumann neighborhood, then it interacts with each of those agents with a 
probability of one-third. If the security agent interacts with an agent, there are two possible 
outcomes: (1) it releases civilians or (2) it arrests terrorists (active or inactive), with a probability 
determined by using the U-shaped symmetrical polynomial function described above. When used 
for security agents arresting terrorist agents, the U-shaped symmetrical polynomial function is 
cubic. (When used for generating terrorist agents, the U-shaped symmetrical polynomial function 
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is fifth order, as shown in Figure 3.) The probability of arresting a terrorist agent increases for 
more radical agents (sum of tag integers closer to 0 or 45). An arrested terrorist agent is 
permanently removed from the environment. 

 
 

Incubation and Community Simulation 
 

The day-to-day behavior of the community becomes apparent only after the agents, 
particularly the civilian agents, have learned to live in the environment. The incubation period is 
that time during which the agents are allowed to adjust to the environment. The portion of the 
simulation encompassing the incubation period is referred to as the incubator. The time-step of 
the incubator is representative of a year. The portion of the simulation following the incubator is 
referred to as the simulator. When switching from the incubator to the simulator, the model must 
be calibrated to the adjusted time-step. First, the number of time-steps that make up a year, Ty, 
must be chosen. At each time-step, the current time of the simulation is incremented by 1/Ty. For 
ease of discussion, we refer to a time-step with a duration of 1/Ty as a day. (If the incubation 
time-step is representative of a year, then using Ty = 365 would produce the day that we are 
familiar with.) All time-related parameters must be adjusted. The agents’ age, in years, is 
converted from an integer to a real number by adding a random number from U(0,1). In the 
simulator, each agent’s age is incremented at each time-step by 1/Ty. The agents’ maximum and 
minimum fertility ages, as well as the agents’ death ages, remain integers. To maintain consistent 
agent evaluations of resources, in order to maintain stable agent wealth when switching between 
the incubator and simulator, the resource concentrations in the environment are divided by Ty. 
The agents’ resource metabolisms are also divided by Ty. 
 

When a terrorist attack occurs, all resources are destroyed on the nodes involved, and the 
area remains devoid of all resources for 2 years. In the incubator, this time period is equal to two 
time-steps. In the simulator, the damaged area also remains devoid of all resources for 2 years, 
but the number of time-steps is 2 * Ty. Fear is generated in the same way in the incubator and 
simulator, but the fear dispersion rate (on a per-time-step basis) must be adjusted. In the 
incubator, fear dispersion on a per-time-step basis is the rate at which fear disperses in a year. In 
the simulator, on the first day, the fear dispersion that will occur over the first year is calculated 
by using the procedure from the incubator. The resulting change in fear over the next year at 
each node is then divided by Ty, producing the change in fear per day at each node. After 1 year 
passes or when a terrorist attack occurs or when 1 year has passed since the last terrorist attack, 
the change in fear per day at each node is recalculated.  
 

The occurrence probability for procreation and cultural exchange are reduced from 1.0 in 
the incubator to 1/Ty in the simulator. This modification means that in the incubator, a potential 
parent agent will consider procreating at each time-step, but in the simulator, this will happen at 
each time-step with a reduced probability. The same is true for cultural exchanges. In the 
incubator, an agent will consider culturally interacting with a neighbor at each time-step. In the 
simulator, at each time-step, an agent will consider culturally interacting with only one of its 
neighbors, with a probability of 1/Ty. 
 

Agent resource memory remains unchanged, except that the resource magnitudes held in 
memory are divided by Ty. Agent fear memory also changes in the transition from the incubator 
to the simulator. For the baseline case, fear memory consists of 5 years of memory of the largest 
and smallest nodal fears seen each year. In the incubator, this means keeping track of the largest 
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and smallest nodal fears seen at each time-step. However, in the simulator, 1 year is composed of 
multiple time-steps. At the end of 1 year, an agent remembers the minimum and maximum fear 
seen in the past year, t1, as well as the minimum and maximum fear seen in the previous four 
years, t2, t3, t4, and t5. At the beginning of the new year, minimum and maximum fears seen in t5 
are forgotten. The present year becomes t1; what had been referred to as t1 becomes t2, t2 
becomes t3, and so on. For the first day of the new year t1, the minimum and maximum fear 
remembered are the minimum and maximum fear seen while searching the environment on that 
day. On the second day of year t1, the minimum fear seen is compared to the minimum fear 
remembered on the first day, and the smallest value is remembered. A similar comparison is 
done for maximum fear. The procedure is repeated for each day in t1. When the year is over, at 
the beginning of a new year, the minimum and maximum fear remembered in t5 is forgotten, and 
the process is repeated. 
 

The last change in the transition from the incubator to the simulator involves the 
determination of agent historical nodal wealth. For the baseline case, as well as all sensitivity 
studies done for this paper, the historical nodal wealth is the average agent generalized wealth 
that has been present on a node over the previous 10 years. In the incubator, this is easily 
calculated, since 10 years equal 10 time-steps. However, in the simulator, determining historical 
nodal wealth is not so easy. When an agent first moves into the simulator, it has 10 years’ worth 
of data from the incubator and nothing from the simulator. On the first day of a year in the 
simulator, the agent generalized wealth present on each node that day is determined, and the 
value at each node is divided by Ty. Since the historical nodal wealth is calculated by using 
10 years’ worth of data, on the first day of a year in the simulator, the data would be taken from 
the first day of year t1; all of the data collected for years t2 through t10; and 364 days out of 365 
for year t11. In this way, the historical nodal wealth is still the average nodal wealth over a 
10-year period. In general, for any day in year t1, the historical nodal wealth at a given node can 
be calculated from the equation: 
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where HNW1,k is the historical nodal wealth calculated on day k of year t1, GW1,x is the agent 
generalized wealth present on the node on day x of year t1, GW2 is the total agent generalized 
wealth present on the node over year t2 (similar for GW3 through GW11), and Ty is the number 
of days in a year. On the last day in the first year of the simulator, year t1’s contribution to the 
historical nodal wealth is based on Ty days, or one full year, and year t11’s contribution has 
shrunk to zero. On the first day of the next year in the simulator, all of the year subscripts are 
incremented by adding one, and year t1 once again represents the current year, and year t12 is 
forgotten. 
 
 

RESULTS AND DISCUSSION 
 

The process described above was implemented by using MatLab (MathWorks 2002). 
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Generating Initial Conditions with Various Incubation Cut-off Times 
 

The simulation of initial conditions involves a two-step process. First, pre-incubation 
conditions are formulated by using input parameters, where some input parameters define 
deterministic characteristics of either the environment or the agent population and others define 
ranges for uniform distributions. The pre-incubation conditions are then used to begin incubation 
where the time-step is analogous to 1 year. Upon termination of this incubation at a specific time, 
the ending conditions of both the environment and agent population are recorded. The post-
incubation conditions eliminate much of the bias introduced by the user input parameters and the 
methods used to generate the pre-incubation conditions. More significantly, the post-incubation 
conditions will also typically represent an agent population acclimatized to its environment. The 
agents have had time to evolve and gain knowledge of their environment. The post-incubation 
conditions are then used to begin a simulation in which the time-step is much shorter. The 
occurrences during these simulations are the occurrences of interest. 
 

In performing this process and analyzing the results, two scenarios were considered. 
First, a single set of pre-incubation conditions was generated. The input parameters are those 
defined throughout the previous sections of this paper. These conditions were then used to begin 
an incubation run. From this incubation run, post-incubation conditions were recorded after 200, 
700, and 1,200 time-steps (years). Figure 4 shows the total nonsecurity agent population over the 
time this incubation run was performed. 

 
In each case, when the post-incubation conditions were generated after 200, 700, and 

1,200 years of incubation, they were used as the initial conditions for the simulator. Each 
simulator run used 365 time-steps per year. Figure 5 shows the total non-security agent 
population over a 5-year period for the cases where the initial conditions are based on 200-, 700-, 
and 1,200-year incubations, respectively.  
 

Qualitatively, the simulated population histories continue on from the point at which the 
incubator left off. For example, when the post-incubation conditions were based on an incubation 
run of 200 years (see Figure 4), the incubator showed a relatively small population (less than 
100 non-security agents) with a relatively small growth rate. In the corresponding simulator 
population history (see Figure 5), the population continues to be low and the growth rate 
continues to be small. The opposite is the case in which the post-incubation conditions were 
based on an incubation run of 700 years. Here the incubator had a moderate population (over 
300 nonsecurity agents) and was experiencing rapid growth. In the corresponding simulator 
population history (see Figure 5), the population is moderate and the growth rate continues to be 
rather rapid. In the case in which the post-incubation conditions were based on an incubation run 
of 1,200 years (see Figure 5), the population is large (over 600 non-security agents) and rather 
stable but becomes somewhat cyclic. At the time that post-incubation conditions were generated, 
the population was climbing toward the upper cusp of one of those cycles. Not unexpectedly, the 
simulator shows a large population with a moderate growth rate.  
 

At 200-, 700-, and 1,200-year incubation times, the growth rates shown in Figure 5 are 
superimposed on Figure 4. In each case, the growth rate from the simulator was significantly 
greater than the growth trend seen in the incubator in the same time frame. Although the causes 
of this phenomenon require further experimentation, several observations can be made at this 
time. When 1,200-year incubation was used, the corresponding simulator growth rate closely  
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FIGURE 4  Incubator population history over 1,500 years 
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FIGURE 5  Simulator population history from using initial 
conditions from 200-, 700-, and 1,200-year incubations 

 
 
matched the growth rate seen in the incubator at approximately 1,200 years over the 5-year 
period considered. Additional experiments using 5-year simulations in the simulator show that as 
Ty approaches 1.0, the growth rates in the simulator approach the growth trends in the incubator, 
as would be expected. Other experiments using 20-year simulations in the simulator with a Ty of 
12 and 52 show that the growth rates in the simulator approach the respective growth trends 
exhibited in the incubator. 
 

The behavior of the total nonsecurity agent population when shifting from incubator to 
simulator is important to consider. Major changes are neither expected nor desired. What 
happens in the incubator occurs at a particular rate per year; in the simulator, that particular rate 



14 
 

per year is expected to fall within the same range as it does in the incubator, except one year is 
divided into multiple time-steps. In essence, the incubator speeds through history; the simulator 
moves slowly from the present into the future. With regard to population (and total population is 
indicative of many aspects of individual agent behavior), this transition is smooth and appears to 
be insensitive to the time in the incubation when the transition takes place. 
 

Of course, the population history is not the only comparison of interest. A large amount 
of data are extracted from both the incubation and simulator runs. For example, the mean cultural 
identity can be plotted for both the incubation and simulator. The mean cultural identity coming 
out of the incubator remains relatively stable throughout the simulator. The same is the case for 
the variation in the cultural identity. The portions of the population with a cultural identity 
between 0–9, 10–18, 19–27, 28–36, and 37–45 were also examined. The population coming out 
of the incubator had cultural identity demographics very similar to those throughout the 
simulator. Other agent population characteristics where also examined, including: wealth, age, 
vision, resource metabolisms, innate nervousness, and initial endowment. The agent population 
characteristics at the end of the incubator were similar to the characteristics throughout the 
5-year simulator run regardless of the incubation time. For example, when incubation was 
terminated after 1,200 time-steps, the average agent vision was 10 nodes in the four cardinal 
directions. The maximum vision in the population was 12; the minimum vision was 9. 
Throughout the simulation, the maximum and minimum remained the same, although the 
average vision showed a very slight increase. This behavior was typical of the other 
characteristics defining the population, including: wealth, resource metabolism, age, death age, 
and innate nervousness. For the 200-year incubation, more changes were observed in the 
simulator. The population was smaller; consequently, births and deaths had a larger impact. 
Similar behavior was observed for the 700-year incubation. The fairly limited adjustments 
between the incubator and the simulator do not drastically affect the agent population. 
 

The next issue to be examined is the effect on agent behavior as the agents move around 
the environment. To examine this, consider the historical nodal wealth averaged over the last 
10 years of the incubator — specifically the case in which the incubator was run for 1,200 years. 
Figure 6 is the historical nodal wealth contour plot, showing the average agent generalized 
wealth present on a node over the last 10 years of the incubation. After the 5-year simulation, 
another historical nodal wealth contour plot was generated. In this case, the historical nodal 
wealth comprises the last 5 years of the incubator plus the additional 5 years of the simulator 
(i.e., it is still based on 10 years of data). Figure 7 shows historical nodal wealth after simulation. 
 

A comparison of Figures 6 and 7 shows no notable differences between the two. Some 
minor changes in magnitude and variations in contour shapes may exist, but, for the most part, a 
detailed comparison indicates agent behavior is unchanged between the incubator and simulator. 
This is especially true for areas where the historical nodal wealth is relatively high and less true 
for areas where the historical nodal wealth is relatively low. In the simulator, agents are 
maintaining their wealth and moving around the environment in much the same way as they did 
in the incubator. A similar comparison was done for population density contours, where the 
average nodal population over identical 10-year periods was considered. The results of that 
analysis showed that nodal population density also showed few significant changes between the 
incubator and simulator. 
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FIGURE 6  Historical nodal wealth over the last 10 years of 
a 1,200-year incubation 
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FIGURE 7  Historical nodal wealth after 5 years in the simulator 
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The formation and behavior of terrorist agents, as well as the generation of security 
agents within the population, varied significantly among the three scenarios considered here. 
When the incubation was stopped after 200 years and the simulation began, the population was 
small, and relatively little terrorist activity had occurred in that short period of instability. Low 
levels of terrorist activity led to only a small or nonexistent security population. After the 
transition from incubator to simulator, no additional terrorist activity occurred, and only minimal 
security was present over short periods of time (a result of fear created by the attacks in the 
incubator). When the incubator was run for 700 and 1,200 years, the populations were either 
growing rapidly or were relatively stable, respectively. Terrorist activity within the incubator 
resulted in a constant security presence by the end of the incubation runs. After the transition 
from incubation to simulation, the trends appeared to continue. In both cases, multiple terrorist 
attacks occurred in the 5-year simulations, and security levels jumped upward just after the 
attacks and slowly declined in the time following. When only the transition between incubation 
and simulation is considered, the behavior related to terrorism and security appears to be 
relatively constant even after the time-step definitions change.  
 

However, the transition between incubation and simulation does not appear to be 
seamless. While the agent demographics, terrorist and security behavior, and aggregate behavior 
of the simulator remain fairly steady, there is a short time in the beginning of the simulator run in 
which the behaviors of agents seeking resources change. When an agent seeks its critical 
resource, it has a tendency to try to equalize its generalized resources. If one generalized 
resource drops below the others, the agent begins searching for the corresponding resource. 
Provided that the agent remembers where to find adequate concentrations of all the resources to 
ensure survival, the agent’s generalized resources will reach an equilibrium in which each 
generalized resource is “close” to being equal. How close together the generalized resources can 
get depends on the magnitudes of the resources collected during a time-step. Since in order to 
maintain wealth, environmental resource concentrations have been factored by 1/Ty in the 
simulator, when the agent population moves into the simulator, there is a period of time during 
which an agent will attempt to equalize its generalized resources. Since an agent can collect only 
a small amount of a given resource at a time-step in the simulator (whereas in the incubator, it 
can collect 1 year’s worth of that resource), the agent has a tendency to spend more time seeking 
its critical resource. In other words, the agent will spend more time on the pile of its critical 
resource. Since all agents are doing the same for their critical resources, a noticeable change in 
behavior can be observed in the early phase of a simulator. This behavior will continue to occur 
until the differences between each agent’s generalized resources are reduced. Once the 
generalized resources have been equalized, the agent resource usage will once again stabilize. 
The agent’s behavior when seeking resources will again look like it did in the incubator. 
 

The time required for the simulator to stabilize varies with how stable the agent 
population is at the time of simulation. For example, when the incubator ended after 200 years, 
the simulator required approximately 1 year to stabilize; in this case, the population is small but 
there is little growth. When the incubator ended after 700 years, the simulator required 
approximately 2 years to stabilize; in this case, the population is established but experiencing 
rapid growth. And when the incubator ended after 1,200 years, the simulator required as little as 
one-half year to stabilize; in this case, the population is large and relatively stable. Thus, the 
change in the behavior of agents seeking resources always occurs, no matter how long the 
incubator is allowed to run. However, the more stable the population, the quicker the simulator 
stabilizes. 
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Incubation Runs Using Identical Input Parameters 
 

The next issue to examine is the variability of post-incubation conditions generated by 
using one set of input parameters and their effects on 5-year simulator runs. For this analysis, 
four post-incubation conditions were generated, again by using the input parameters discussed 
previously, and the post-incubation conditions were based on 1,200 years of incubation. The only 
difference in each of the trial runs was produced by using a different random number seed to 
generate the initial population. After the post-incubation conditions were generated, each was 
used to begin a single 5-year simulation, where one year was subdivided into 365 time-steps. 
 

Each of the four incubation runs was successful. A stable population evolved in the 
environment, and after 1,200 years, the post-incubation nonsecurity agent populations were all 
about 600 to 700. (Incubation run 4 had an ending population just below 600. This lower 
population was the result of an increased level of terrorist activity.) The population history for 
the first incubation run is shown in Figure 4. The behavior over time was similar for all four 
runs. While some differences did exist (e.g., in the second incubation run), the population 
dropped to approximately 25 agents around year 200, and the basic shape of the population 
history remained the same. In each case, the initial population of 500 agents grew rapidly for a 
brief period of time, then crashed, struggled to gain a foothold in the environment as the agents 
gained knowledge of their environment and evolved, and this was followed by rapid growth and 
finally a decreased growth rate as the population stabilized. 
 

Agent characteristics (including, vision, resource metabolisms, wealth, and innate 
nervousness) evolved in a similar fashion for all four incubation runs. For example, by the end of 
1,200 years, in each case, the average agent vision evolved to include approximately 10 nodes in 
the four cardinal directions. The average agent vision going into the incubator was 5 nodes in the 
four cardinal directions. The agent resource metabolisms at the end of the incubator were 
approximately the same. Agent age demographics were also steady between the four incubation 
runs. Agent generalized wealth (including the absolute maximum and minimum, as well as the 
average) was also similar after 1,200 years of incubation. In each case, agent innate nervousness 
(originally uniformly distributed between 0 and 1) averaged somewhere between 0.4 and 0.6, 
with the absolute maximum and minimum at +0.1 or –0.1 of the average. Thus, the agent 
characteristics defining the post-incubation agent population were very similar among the four 
incubation runs. 
 

Even though most agent characteristics were similar among the four incubation runs, the 
agent cultural identities differed significantly, and this led to differences in the level of terrorist 
activity and the corresponding level of security present in the environment. Essentially the 
incubation runs fell into three categories: (1) runs 1 and 2 had a moderate level of terrorist 
activity over the 1,200-year incubation (for run 1, 20 terrorist attacks occurred, 11 terrorist 
agents were arrested, and the security level was approximately 3.6% of the nonsecurity 
population; for run 2, 28 terrorist attacks occurred, 23 terrorist agents were arrested, and the 
security level was approximately 5.0% of the nonsecurity population); (2) run 3 had significantly 
more terrorist activity over the 1,200-year incubation (70 terrorist attacks occurred, 121 terrorist 
agents were arrested, and the security level was approximately 10.0% of the nonsecurity 
population); and (3) run 4 showed significantly less terrorist activity over the 1,200-year 
incubation (11 terrorist attacks occurred, 1 terrorist agent was arrested, and the security level was 
approximately 4.0% of the nonsecurity population at the end of incubation).  
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Other information about the four incubation runs casts light on the reason for the 
differences in the conditions among the different incubation runs. First, the level of terrorist 
activity is directly related to the agents’ cultural identity. For example, in incubation run 4, where 
the level of terrorist activity was relatively low, at one point during the incubation run 
(specifically, when the population reached its low point), the agent population was entirely made 
up of agents with a cultural identity between 19 and 27. While this anomaly was quickly 
eliminated by the population, by the end of the 1,200-year incubation, the group with a cultural 
identity between 19 and 27 was still dominant, and the fringe groups (those with cultural 
identities between 0 and 9 and between 37 and 45) were an extremely small portion of the total 
population. Likewise, in incubation run 3, the group with a cultural identity of 19–27 made up 
approximately 40% of the population, which led to significant increases in the groups with 
cultural identities between 10 and 18 and between 28 and 36 (approximately 20% and 25% of the 
population, respectively). This difference led to larger-than-usual fringe group populations. 
 

Thus, the differences in the level of terrorist activity are directly attributed to the 
distribution of cultural identities in the population throughout the incubation run. The 
distribution of cultural identities is controlled not so much by the randomness of the 
pre-incubation population but by the randomness during the early “collapse” of that 
pre-incubation population (Figure 4). When the population crashes, the distribution of 
pre-incubation cultural identities can be drastically modified. Sometimes the distribution is 
flattened out, thereby adding to the fringe groups. At other times, the distribution is tightened up, 
and the population tends toward the median. Once the population begins to grow again, cultural 
interactions lead to further changes in the agents’ cultural identities. It is reasonable to assume 
that given enough time, the distribution of cultural identity for the individual incubation runs 
would stabilize. However, since each of the four incubations was run for 1,200 years, different 
cultural identity distributions resulted. 
 

Generally, when the level of terrorist activity was high at the end of an incubation run, 
the corresponding level of security was also high, and vice versa. But the correlation between 
these is not particularly strong. When the case with the least terrorist activity, run 4 (where 
11 terrorist attacks and 1 arrest occurred) is considered, the security level of 4.0% coming out of 
the incubator was approximately the same as that of run 1: 3.6% (where 20 terrorist attacks and 
11 arrests occurred). Keep in mind that the level of security is related to the level of fear seen in 
the environment, as well as the maximum and minimum fear seen over the past 5 years. Thus, 
sporadic terrorist attacks, which allow time for fear to dissipate, can lead to relatively low 
security levels. Such is the case for incubation runs 1, 2, and 4. In the case where the level of 
terrorist activity was substantially higher — incubation run 3 (where 70 terrorist attacks and 
121 arrests occurred) — the attacks are no longer sporadic. The fear levels are high and 
consistently increasing; attacks are occurring throughout the environment and thereby effecting 
larger portions of the population. 
 

One last observation is about the differences between these four different incubation runs 
and the resulting post-incubation conditions. Notice that only in incubation run 4 did the security 
get the better of the terrorists (121 terrorist agents arrested for 70 terrorist attacks). Only when 
the level of terrorist activity was high were the results of security really felt. Intuitively, this 
makes sense. When terrorist activity is low and attacks are sporadic, it is difficult to keep a sense 
of urgency in the population; consequently, the level of security is highly variable (increasing 
immediately after an attack, decreasing in the times when no attacks occur). This leads to a great 
disadvantage for the security agents. They are not present in substantial enough numbers to keep 
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the threat level under control; therefore, the terrorist agents have the advantage. If the population 
is complacent about terrorism, the terrorists will gain an advantage, allowing them to conduct 
attacks with a much lower risk of being thwarted. However, as the level of terrorist activity 
increases, the level of security also increases, and the terrorist agents are subjected to a 
significantly greater probability of being arrested. 
 
 
Post-incubation Initial Conditions in the Simulator 
 

Each of the four individual sets of post-incubation conditions generated previously for 
1,200 years of incubation will be used as the initial conditions for a single 5-year simulation 
where each year is subdivided into 365 time-steps. As was observed before, the nonsecurity 
agent population defined by the post-incubation conditions was stable throughout the 5-year 
simulation, with relatively slow growth. The agents’ characteristics also remained stable, 
including vision, metabolism, age demographics (average, maximum, minimum, and average 
death age), wealth (average, maximum, and minimum), innate nervousness, and initial 
endowment (average, maximum, and minimum). The cultural demographics of the population 
were also stable over the 5-year simulation. The cultural demographics measured were the 
average cultural identity, variation in cultural identity, and the portions of the nonsecurity 
population made up of agents with a cultural identity of 0–9, 10–18, 19–27, 28–36, and 37–45. 
 

Considering the level of terrorist activity during 5 years in the simulator, the simulation 
associated with incubation run 1 had 5 terrorist attacks and 4 terrorist arrests. The level of 
security ranged between 1.5% and 6.5%, with a ballpark average more than 3% over the 5-year 
simulation. For the simulation associated with incubation run 2 (see Figure 8a-d), 7 terrorist 
attacks occurred, and 12 terrorist agents were arrested. The level of security ranged between 
1.5% and 6.5% (Figure 8c), with an average of about 3% over the 5-year simulation. For the 
simulation associated with incubation run 3, 12 terrorist attacks occurred, and 13 terrorist agents 
were arrested. The level of security started the simulation around 15% and steadily declined to 
approximately 5%. Attacks at the very end of the incubation and early in the 5-year simulation 
caused a significant increase in security at the incubation/simulation interface. For the simulation 
associated with incubation run 4, 8 terrorist attacks occurred, and 5 terrorist agents were arrested. 
The level of security at the beginning of the simulator was about 4%, fell quickly down to 1%, 
steadily increased to an average of about 7%, and then declined, ending the simulation with an 
average of 6.5%. 
 

Comparing the level of terrorist activity in the simulator to the results from the incubation 
reveals some trends. Incubation runs 1 and 2 exhibited moderate levels of terrorist activity, 
incubation run 3 showed a high level of terrorist activity, and incubation run 4 showed a minimal 
level of terrorist activity. Note that when these post-incubation conditions were used to begin a 
5-year simulation, the level of terrorist activity roughly corresponded to that in the incubator. 
The level of terrorist activity experienced in simulation runs 1 and 2 was moderate (with 7 and 
5 attacks, respectively; averaging 6 attacks in 5 years). Simulation run 3 experienced twice the 
number of attacks (12 attacks in 5 years). Simulation 4 had 8 attacks in 5 years. At the end of 
incubation run 4, the number of terrorist attacks was increasing, and the level of security was 
relatively low. Therefore, the post-incubation conditions depicted a population in a very different 
phase of its development than in the other three simulations. 
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FIGURE 8  Terrorism and security activity plots for simulation 2 
 
 

Further examination of Figure 8, which shows behavior typical of all four simulations, 
allows for some additional observations. First, all seven terrorist attacks are shown separately in 
Figure 8b; the attack damage represents the total agent generalized wealth destroyed by terrorists 
during that time-step. By comparing Figure 8b to 8c, the responsiveness of the security demand 
algorithm can be seen clearly. Early in the first year of the simulator, three terrorist attacks occur, 
and the security level spikes upward. Just prior to the end of year 1, a small terrorist attack 
occurs, and this attack causes a slight increase in the security level. Right around year 3, two 
terrorist attacks occur in quick succession; one very large one is immediately followed by 
another smaller one. The security level exhibits a significant increase before gradually declining. 
However, before the gradual decline in security can reach its pre-attack level, another terrorist 
attack occurs at the end of year 4. This attack causes another significant increase in security, 
higher than the previous jump, even though the attack was not nearly as large. The generalized 
wealth time history plot (average, minimum, and maximum generalized wealth for the 
nonsecurity population; see Figure 8a) provides a scale for the magnitude of each of the terrorist 
attacks relative to the agent population. 
 

In all four simulations, there seemed to be an inordinate number of terrorist attacks 
occurring early in the first year. For example, for simulation run 2, Figure 8b shows that three 
terrorist attacks occurred in the first quarter of year one. The other simulation runs show similar 
scenarios. This phenomenon is primarily caused by the brief change in the behavior of civilian 
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agents as they seek resources, which causes changes to the way the civilian agents are 
congregating. The terrorist agents see these increases in agent wealth concentrations and decide 
to conduct attacks. Once the population has settled down, terrorist behavior also settles down. 
This observation merely supports the previous assessment: the simulator requires a period of 
time to stabilize. 
 
 
Effects of Changes in the Fear Memory 
 

The sensitivity of changes in fear memory to terrorist activity and security levels was also 
examined. Although not directly related to simulating initial conditions, fear memory appears to 
be an important component in the behavior of the system. Three levels of fear memory were 
considered: 3-, 5-, and 8-year durations (the previous fear memory of 5 years is considered the 
baseline). A single incubation was run to 1,200 years for each of the fear memory cases. On the 
basis of the resulting post-incubation conditions, a single 5-year simulation was run for each 
case. All other parameters were set as previously discussed. The following discussion focuses on 
results from the 1,200 years of incubations. The results from the 5 years of post-incubation 
simulation exhibited similar trends. 
 

First, consider the levels of terrorist and security activities. In Figures 9−11, 
side (a) shows the damage and average fear time history plots for the 1,200-year incubation 
phase for each of the three cases, and side (b) shows the cumulative number of terrorist attacks 
and terrorist agent arrests. A comparison of these figures indicates that the changes in fear 
memory have varied effects. For example, when the agents have a 5-year fear memory, 
20 terrorist attacks and 11 terrorist arrests occur. When the fear memory is decreased and set at 
3 years, 32 terrorist attacks and 35 terrorist arrests occur. Decreased fear memory appears to lead 
to an increase in terrorist and security activities. Likewise, when the fear memory is increased 
and set at 8 years, 82 terrorist attacks and 104 terrorist arrests occur. In other words, increased 
fear memory also leads to an increase in terrorist and security activities. Similar differences were 
observed between the corresponding 5-year simulator runs. 
 

The relationship between fear memory and terrorist and security activity levels is the 
result of complex interactions within the model. Consequently, the reasons for the observed 
differences in the terrorist and security activity levels for the 3-, 5-, and 8-year fear memory 
cases can only be gleaned from a more thorough analysis of the results. For this reason, the 
overall historical nodal wealth should be considered. The overall historical nodal wealth is 
simply the average agent generalized wealth that has been present on each node over the entire 
incubation period of 1,200 years. Figures 12, 13, and 14 show the overall historical nodal wealth 
for the 3-, 5-, and 8-year fear memory cases, respectively.  
 

Close examination of these figures will show that for the 3-year and 8-year fear memory 
cases, the concentration of historical nodal wealth is greater than for the 5-year fear memory 
case. In fact, in the 8-year fear memory case, where the terrorist and security activity levels were 
the highest, the concentration of historical nodal wealth was the greatest. In all three cases, the 
maximum, minimum, and average generalized wealth time histories were very similar; in other 
words, the agent populations were of similar overall wealth. These changes in the concentration 
of historical nodal wealth can be directly related to the terrorist agents’ attack-triggering 
mechanism, since the value of a site includes the agent generalized wealth and historical nodal  
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FIGURE 9  Terrorism and security statistics, 3-year fear memory 
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FIGURE 10  Terrorism and security statistics, 5-year fear memory 
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FIGURE 11  Terrorism and security statistics, 8-year fear memory 
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FIGURE 12  Overall historical nodal wealth, 3-year fear memory 
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FIGURE 13  Overall historical nodal wealth, 5-year fear memory 
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FIGURE 14  Overall historical nodal wealth, 8-year fear memory 
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wealth on that site’s von Neumann neighborhood. The more concentrated the wealth, the more 
likely a terrorist attack will occur. Furthermore, if the wealth is more concentrated, the 
population is likely to be more concentrated too. (Overall population density contour plots verify 
this assumption.) The terrorist agents are more likely to be interspersed among this group and 
will therefore have the chance for more cultural interactions, helping to generate more agents 
with radical cultural identities. And finally, if more agents are in this area and it is an area where 
more terrorist attacks are occurring, then this will increase the security demand even further, 
resulting in more security agents. This is an important observation, since in the cases where the 
historical nodal wealth concentrations were relatively high, the security tended be more 
successful in arresting terrorists than terrorists were successful in carrying out attacks. 
 

But none of this explains why different fear memory caused this increased concentration 
of historical nodal wealth. Recall that when civilian agents are searching for their critical 
resource, they are attempting to balance the reward a node has to offer (the amount of the critical 
resource present) with the fear to which they are subjected. Fear memory is an integral part of 
this balancing. The agents are looking to balance resources with fear so that they can perhaps 
avoid becoming a victim of a terrorist attack. However, there is apparently an optimal memory. 
Too great a fear memory leads agents to behave in a way that makes them become a prime target 
for a terrorist attack. Too little of a fear memory has agents moving around, oblivious to the risk; 
therefore, agents are again behaving in a way that makes them become a prime target for a 
terrorist attack. In other words, fear memory is a tool that can either help or hurt, depending on 
its scope. Further work is required to confirm that this effect of fear memory is a general trend 
and not just an artifact of this particular case. 
 
 

CONCLUSIONS 
 

A resource-based agent model has been developed to model terrorist activity. 
Endogenous terrorist agents are formed from within the civilian agent population by using a tag-
mediated cultural identity. The terrorist agents conduct surveillance and commit terrorist attacks. 
When a terrorist attack occurs, fear is generated in the area subjected to the attack. Over time, 
this fear spreads out to the surrounding area. When searching for resources, civilian agents 
attempt to balance the rewards of visiting certain nodes with their fear of those nodes and with 
their innate nervousness. Civilian agents demand security on the basis of their wealth, fear, and 
nervousness. 
 

When the model is run by using a time-step analogous to 1 year, the model is said to be 
acting as an incubator. After the incubator is run for a period of time, the agent population 
evolves from that set by the user to a population in tune with its environment. When the 
incubation phase ends, the post-incubation conditions become the initial conditions for a 
relatively short time-step simulation: the simulator. 
 

A number of incubator and simulator runs were conducted. First the incubator was run 
and terminated at various points, thereby generating post-incubation conditions at various stages 
of the population’s development. Second, multiple post-incubation conditions were generated by 
using identical input parameters. On the basis of these results, the following conclusions could be 
drawn. (1) In the transition between incubation and simulation, the characteristics defining the 
agent population remain stable. (2) The level of terrorist activity and, hence, the level of security 
in the environment remain consistent between the incubator and simulator. (3) The incubator and 
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simulator are robust, requiring no special criteria to be satisfied in order to generate initial 
conditions. (4) The behavior of civilian agents when searching for resources is altered when they 
enter the simulator but stabilizes after a period of time (the length of which depends on the level 
of evolution attained in the incubator).  

 
A combined incubator/simulator simulation was performed for a 3-, 5-, and 8-year fear 

memory. The 5-year fear memory case was considered as the baseline. The following qualitative 
conclusions resulted. (1) An increase in the duration of the fear memory resulted in significant 
increases in the level of terrorist activity and consequently the security level. (2) A decrease in 
the duration of fear memory also resulted in an increase in terrorism and a larger security 
presence. (3) The increased terrorism seems to result from changes in civilian agent behavior — 
changes that lead to increased concentrations of wealthy agents. (4) The changes in the behavior 
of civilian agents may be allowing increased numbers of radical agents to form (increased 
population densities lead to more cultural interactions) and may be making it easier for terrorists 
to conduct attacks. Thus, the duration of fear memory (i.e., the amount of time that an agent 
remembers fear that it has seen) can have significant effects on the level of terrorist activity. The 
effect is nonlinear; too great or too little fear memory works against the civilian agents, 
promoting increases in terrorism. This effect must be examined more carefully. 
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